Most viewed questions in Calculus

1 answers
0 votes
An analytic function $f(z)$ of complex variable $z=x+iy$ may be written as $f(z)=u(x,y)+iv(x,y)$. Then $u(x,y)$ and $v(x,y)$ must satisfy$\dfrac{\partial u}{ \partial x} ...
0 answers
1 votes
For a particular project, eight activities are to be carried out. Their relationships with other activities and expected durations are mentioned in the table below.$\begi...
1 answers
0 votes
The value of the following definite integral is __________ (round off to three decimal places)$$\int_1^e (x \: \ln \: x) dx$$
0 answers
0 votes
The area common to both circles r=a$\sqrt{2}$ and r=2a cos$\theta$.
0 answers
0 votes
The value of $\int_{0}^{^{\pi }/_{2}}\int_{0}^{\cos\theta }r\sin\theta \:dr\:d\theta$ is $0$$\frac{1}{6}$$\frac{4}{3}$$\pi$
0 answers
0 votes
Consider a spatial curve in three-dimensional space given in parametric form by $$x(t)= \cos t, \:y(t)=\sin t, z(t)=\dfrac{2}{\pi } t \: 0\leq t\leq \dfrac{\pi }{2}$$ The...
0 answers
0 votes
The value of $\displaystyle{} \lim_{x \rightarrow 0} \left( \frac{1 – \cos x}{x^{2}}\right)$ is$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{2}$$1$
0 answers
0 votes
The directional derivative of the function $f(x,y)=x^2+y^2$ along a line directed from $(0,0)$ to $(1,1)$, evaluated at the point $x=1, y=1$ is$\sqrt{2}$$2$$2 \sqrt{2}$$4...
0 answers
0 votes
A parabola $x=y^2$ with $0 \leq x \leq 1$ is shown in the figure. The volume of the solid of rotation obtained by rotating the shaded area by $360^{\circ}$ around x-axis ...
0 answers
0 votes
The value of $\displaystyle{\lim_{x\rightarrow 0}\left(\frac{-\sin x}{2\sin x+x\cos x}\right)}$ is ________
0 answers
0 votes
According to the Mean Value Theorem, for a continuous function $f(x)$ in the interval $[a,b]$, there exists a value $\xi$ in this interval such that $\int_a^b f(x) dx = $...
0 answers
0 votes
0 answers
0 votes
$\displaystyle{}\lim_{x\rightarrow \infty }\sqrt{x^2+x-1}-x$ is$0$$\infty$$1/2$$-\infty$
0 answers
0 votes
0 answers
0 votes
A vector field is defined as $$\overrightarrow{f}\left ( x,y,z \right )=\dfrac{x}{\left [ x^{2}+y^{2}+z^{2} \right ]^{\frac{3}{2}}}\widehat{i}\:+\:\dfrac{y}{\left [ x^{2}...
1 answers
0 votes
If $f(z)=(x^{2}+ay^{2})+i bxy$ is a complex analytic function of $z=x+iy$, where $i=\sqrt{-1}$, then$a=-1, b=-1$$a=-1, b=2$$a=1, b= 2$$a=2, b=2$
0 answers
0 votes
The value of $\displaystyle{}\lim_{x \to \infty}\left ( \dfrac{1 -e^{-c\left ( 1-x \right )}}{1-x\:e^{-c\left ( 1-x \right )}} \right )$ is$\text{c} \\$$\text{c + 1} \\$$...
0 answers
0 votes
The value of $\displaystyle{} \lim_{x\rightarrow 0}\dfrac{1- \cos(x^2)}{2x^4}$ is$0 \\$$\dfrac{1}{2} \\$$\dfrac{1}{4} \\$undefined
0 answers
0 votes
The Fourier cosine series for an even function $f(x)$ is given by $$ f(x)=a_0 + \Sigma_{n=1}^\infty a_n \cos (nx).$$ The value of the coefficient $a_2$ for the function $...
0 answers
0 votes
$\underset{x \rightarrow 0}{\lim} \bigg( \dfrac{1- \cos x}{x^2} \bigg)$ is$1/4$$1/2$$1$$2$
0 answers
0 votes
0 answers
0 votes
The value of $\displaystyle{}\lim_{x \rightarrow 0}\dfrac{x^{3}-\sin(x)}{x}$ is$0$$3$$1$$-1$
0 answers
0 votes
Let $z$ be a complex variable. For a counter-clockwise integration around a unit circle $C$, centered at origin, $$\oint_C \frac{1}{5z-4} dz=A \pi i$$, the value of $A$ i...
0 answers
0 votes
Consider a velocity field $\overrightarrow{V}=k(y\hat{i}+x\hat{k})$ , where $K$ is a constant. The vorticity, $Ω_Z$ , is$-K$$K$$-K/2$$K/2$
0 answers
0 votes
0 answers
0 votes
The value of the integralover the closed surface $S$ bounding a volume $V$, where $\overrightarrow{r} = x \hat{i} + y \hat{j}+z \hat{k}$ is the position vector and $\over...
0 answers
0 votes
$ \displaystyle{}\lim_{x\rightarrow 0} \left( \dfrac{e^{2x}-1}{\sin(4x)} \right )$ is equal to$0$$0.5$$1$$2$
0 answers
0 votes
The integral $\oint_{c}^{ } (ydx-xdy)$ is evaluated along the circle $x^2+y^2=\frac{1}{4}$ traversed in counter clockwise direction. The integral is equal to$0$$\frac{-\p...