in Calculus recategorized by
0 votes
0 votes

Let $I=\displaystyle \int_{x=0}^1 \int_{y=0}^{x^2} xy^2 dy \: dx$. Then, $I$ may also be expressed as

  1. $\displaystyle \int_{y=0}^1 \int_{x=0}^{\sqrt{y}} xy^2 dx \: dy$
  2. $\displaystyle \int_{y=0}^1 \int_{x=\sqrt{y}}^1 yx^2 dx \: dy$
  3. $\displaystyle \int_{y=0}^1 \int_{x=\sqrt{y}}^1 xy^2 dx \: dy$
  4. $\displaystyle \int_{y=0}^1 \int_{x=0}^{\sqrt{y}} yx^2 dx \: dy$
in Calculus recategorized by
by
5.0k points

Please log in or register to answer this question.

Answer:

Related questions