GO Mechanical

0 votes

Given a vector $\overrightarrow{u} = \frac{1}{3} \big(-y^3 \hat{i} + x^3 \hat{j} + z^3 \hat{k} \big)$ and $\hat{n}$ as the unit normal vector to the surface of the hemipshere $(x^2+y^2+z^2=1; \: z \geq 0)$, the value of integral $ \int (\nabla \times \overrightarrow{u}) \bullet \hat{n} \: dS$ evaluated on the curved surface of the hemishepre $S$ is

- $- \frac{\pi}{2} \\$
- $\frac{\pi}{3} \\$
- $\frac{\pi}{2} \\$
- $\pi$

1,314 questions

81 answers

22 comments

3,438 users