GO Mechanical
0 votes

GATE2019-2-26

  1. GATE2019-2-102
  2. GATE2019-2-102
  3. GATE2019-2-102
  4. GATE2019-2-102

Given a vector $\overrightarrow{u} = \frac{1}{3} \big(-y^3 \hat{i} + x^3  \hat{j} + z^3 \hat{k} \big)$ and $\hat{n}$ as the unit normal vector to the surface of the hemipshere $(x^2+y^2+z^2=1; \: z \geq 0)$, the value of integral $ \int (\nabla \times \overrightarrow{u}) \bullet \hat{n} \: dS$ evaluated on the curved surface of the hemishepre $S$ is

  1. $- \frac{\pi}{2}$
  2. $\frac{\pi}{3}$
  3. $\frac{\pi}{2}$
  4. $\pi$
in Others by (21.2k points) 4 36 102
edited by

Please log in or register to answer this question.

Welcome to GO Mechanical, where you can ask questions and receive answers from other members of the community.

1,193 questions
68 answers
21 comments
2,954 users