in Calculus retagged by
0 votes
0 votes

An analytic function $f(z)$ of complex variable $z=x+iy$ may be written as $f(z)=u(x,y)+iv(x,y)$. Then $u(x,y)$ and $v(x,y)$ must satisfy

  1. $\dfrac{\partial u}{ \partial x} = \dfrac{\partial v}{ \partial y} \text{ and } \dfrac{\partial u}{ \partial y} = \dfrac{\partial v}{ \partial x} \\$
  2. $\dfrac{\partial u}{ \partial x} = \dfrac{\partial v}{ \partial y} \text{ and } \dfrac{\partial u}{ \partial y} = –  \dfrac{\partial v}{ \partial x} \\$
  3. $\dfrac{\partial u}{ \partial x} = –  \dfrac{\partial v}{ \partial y} \text{ and } \dfrac{\partial u}{ \partial y} = \dfrac{\partial v}{ \partial x} \\$
  4. $\dfrac{\partial u}{ \partial x} = –  \dfrac{\partial v}{ \partial y} \text{ and } \dfrac{\partial u}{ \partial y} = – \dfrac{\partial v}{ \partial x} $
in Calculus retagged by
by
27.4k points

1 Answer

0 votes
0 votes

Answer :- $(B)$

Reference :- Cauchy-Riemann Equations

410 points 1 2 4
1 2 4
Answer:

Related questions