# GATE Mechanical 2014 Set 4 | Question: 44

Consider a velocity field $\overrightarrow{V}=k(y\hat{i}+x\hat{k})$ , where $K$ is a constant. The vorticity, $Ω_Z$ , is

1. $-K$
2. $K$
3. $-K/2$
4. $K/2$
in Calculus
recategorized

## Related questions

The value of the integral $\int_{0}^{2}\int_{0}^{x}e^{x+y}dydx$ is $\dfrac{1}{2}(e-1) \\$ $\dfrac{1}{2}(e^2-1)^2 \\$ $\dfrac{1}{2}(e^2-e) \\$ $\dfrac{1}{2}(e-\frac{1}{e})^2$
If $z$ is a complex variable, the value of $\displaystyle{} \int_{5}^{3i}\dfrac{dz}{z}$ is $− 0.511−1.57i$ $− 0.511+1.57i$ $0.511− 1.57i$ $0.511+1.57i$
The value of the integral $\int_{0}^{2}\dfrac{(x-1)^2\sin(x-1)}{(x-1)^2+\cos(x-1)}dx$ is $3$ $0$ $-1$ $-2$
Divergence of the vector field $x_2z\hat{i}+xy\hat{j}-yz\hat{k}$ at $(1,-1,1)$ is $0$ $3$ $5$ $6$
Curl of vector $\overrightarrow{F}=x^2z^2\hat{i}-2xy^2z\hat{j}+2y^2z^3\hat{k}$ is $(4yz^3+2xy^2)\hat{i}+2x^2z\hat{j}-2y^2z\hat{k}$ $(4yz^3+2xy^2)\hat{i}-2x^2z\hat{j}-2y^2z\hat{k}$ $2xz^2\hat{i}-4xyz\hat{j}+6y^2z^2\hat{k}$ $2xz^2\hat{i}+4xyz\hat{j}+6y^2z^2\hat{k}$