# GATE2017 ME-1: 3

Consider the following partial differential equation for $u(x, y)$, with the constant $c > 1$:

$\dfrac{\partial u}{\partial y}+c\dfrac{\partial u}{\partial x}=0$

Solution of this equation is

1. $u(x, y) = f (x+cy)$
2. $u(x, y) = f (x-cy)$
3. $u(x, y) = f (cx+y)$
4. $u(x, y) = f (cx-y)$

recategorized

## Related questions

The differential equation $\dfrac{d^{2}y}{dx^{2}}+16y=0$ for $y(x)$ with the two boundary conditions $\dfrac{dy}{dx}\bigg \vert _{x=0}=1$ and $\dfrac{dy}{dx}\bigg \vert_{x=\displaystyle \frac{\pi}{2}}=-1$ has. No solution. Exactly two solutions. Exactly one solution. Infinitely many solutions.
Consider a function $u$ which depends on position $x$ and time $t$. The partial differential equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u }{\partial x^2}$ is known as the Wave equation Heat equation Laplace's equation Elasticity equation
The Dirac-delta function $\left ( \delta \left ( t-t_{0} \right ) \right )$ for $\text{t}$, $t_{0} \in \mathbb{R}$ ... $\mathcal{L}\left ( \delta \left ( t-a \right ) \right )=F\left ( s \right )$ is $0$ $\infty$ $e^{sa}$ $e^{-sa}$
The Laplace transform of a function $f(t)$ is $L( f )=\dfrac{1}{(s^{2}+\omega ^{2})}.$ Then, $f(t)$ is $f\left ( t \right )=\dfrac{1}{\omega ^{2}}\left ( 1-\cos\:\omega t \right ) \\$ $f\left ( t \right )=\dfrac{1}{\omega}\cos\:\omega t \\$ $f\left ( t \right )=\dfrac{1}{\omega}\sin\:\omega t \\$ $f\left ( t \right )=\dfrac{1}{\omega^{2}}\left ( 1-\sin\:\omega t \right )$
For the equation $\dfrac{dy}{dx}+7x^2y=0$, if $y(0)=3/7$, then the value of $y(1)$ is $\dfrac{7}{3}e^{-7/3} \\$ $\dfrac{7}{3}e^{-3/7} \\$ $\dfrac{3}{7}e^{-7/3} \\$ $\dfrac{3}{7}e^{-3/7}$