in Differential Equations recategorized by
0 votes
0 votes

The Dirac-delta function $\left ( \delta \left ( t-t_{0} \right ) \right )$ for $\text{t}$, $t_{0} \in \mathbb{R}$, has the following property

$$\int_{a}^{b}\varphi \left ( t \right )\delta \left ( t-t_{0} \right )dt=\left\{\begin{matrix} \varphi \left ( t_{0} \right ) & a< t_{0}< b\\ 0 & \text{otherwise} \end{matrix}\right.$$

The Laplace transform of the Dirac-delta function $\delta \left ( t-a \right )$ for $a> 0$;

$\mathcal{L}\left ( \delta \left ( t-a \right ) \right )=F\left ( s \right )$ is

  1. $0$
  2. $\infty$
  3. $e^{sa}$
  4. $e^{-sa}$
in Differential Equations recategorized by
by
1.6k points

Please log in or register to answer this question.

Answer:

Related questions