edited by
0 votes
0 votes

​​​Let $f(.)$ be a twice differentiable function from $\mathbb{R}^2 \rightarrow \mathbb{R}$. If $\boldsymbol{p}, x_0 \in \mathbb{R}^2$ where $\|p\|$ is sufficiently small (here $|| . ||$ is the Euclidean norm or distance function), then $f\left(\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{p}\right)=f\left(\boldsymbol{x}_{\mathbf{0}}\right)+\nabla f\left(\mathbf{x}_{\mathbf{0}}\right)^{\mathrm{T}} \boldsymbol{p}+\frac{1}{2} \boldsymbol{p}^T \nabla^2 f(\boldsymbol{\psi}) \boldsymbol{p}$ where $\boldsymbol{\psi} \in \mathbb{R}^2$ is a point on the line segment joining $x_0$ and $x_0+\boldsymbol{p}$. If $x_0$ is a strict local minimum of $f(\boldsymbol{x})$, then which one of the following statements is TRUE?

  1. $\nabla f\left(\mathbf{x}_{0}\right)^{\mathrm{T}} \boldsymbol{p}>0$ and $\boldsymbol{p}^{T} \nabla^{2} f(\boldsymbol{\psi}) \boldsymbol{p}=0$
  2. $\nabla f\left(\mathbf{x}_{0}\right)^{\mathrm{T}} \boldsymbol{p}=0$ and $\boldsymbol{p}^{T} \nabla^{2} f(\boldsymbol{\psi}) \boldsymbol{p}>0$
  3. $\nabla f\left(\mathbf{x}_{0}\right)^{\mathrm{T}} \boldsymbol{p}=0$ and $\boldsymbol{p}^{T} \nabla^{2} f(\boldsymbol{\psi}) \boldsymbol{p}=0$
  4. $\nabla f\left(\mathbf{x}_{0}\right)^{\mathrm{T}} \boldsymbol{p}=0$ and $\boldsymbol{p}^{T} \nabla^{2} f(\boldsymbol{\psi}) \boldsymbol{p}<0$
edited by

Please log in or register to answer this question.

Answer:

Related questions

1 answers
1 votes
admin asked Feb 16
​​​Find the odd one out in the set: $\{19,37,21,17,23,29,31,11\}$$21$$29$$37$$23$
0 answers
0 votes
admin asked Feb 16
​​​​​In the following series, identify the number that needs to be changed to form the Fibonacci series.$1,1,2,3,6,8,13,21, \ldots$$8$$21$$6$$13$
0 answers
0 votes
admin asked Feb 16
​​The real variables $x, y, z$, and the real constants $p, q, r$ satisfy\[\frac{x}{p q-r^{2}}=\frac{y}{q r-p^{2}}=\frac{z}{r p-q^{2}}\]Given that the denominators are...