# GATE2017 ME-2: 40

A $60$ mm-diameter water jet strikes a plate containing a hole of $40$ mm diameter as shown in the figure. Part of the jet passes through the hole horizontally and the remaining is deflected vertically. The density of water is $1000 kg/m^{3}$. If velocities are as indicated in the figure, the magnitude of horizontal force (in N) required to hold the plate is _________. recategorized

## Related questions

The arrangement shown in the figure measures the velocity $V$ of a gas of density $1 kg/m^{3}$ flowing through a pipe. The acceleration due to gravity is $9.81 m/s^{2}$. If the manometric fluid is water (density $1000 \: kg/m^{3}$) and the velocity $V$ is $20 m/s$, the differential head $h$ (in mm) between the two arms of the manometer is __________.
For the laminar flow of water over a sphere, the drag coefficient $C_{F}$ is defined as $C_{F}=F/(\rho U^{2} D^{2})$, where $F$ is the drag force, $\rho$ is the fluid density, $U$ is the fluid velocity and $D$ is the diameter of the sphere. ... $0.5$. If water now flows over another sphere of diameter $200$ mm under dynamically similar conditions, the drag force (in N) on this sphere is ________.
Water (density $= 1000 kg/m^{3}$) at ambient temperature flows through a horizontal pipe of uniform cross section at the rate of $1 kg/s$. If the pressure drop across the pipe is $100$ KPa, the minimum power required to pump the water across the pipe, in watts, is ______.
Water enters a circular pipe of length $L=5.0$ m and diameter $D=0.20$m with Reynolds number $Re_D=500$. The velocity profile at the inlet of the pipe is uniform while it is parabolic at the exit. The Reynolds number at the exit of the pipe is _________
Water flows through two different pipes $A$ and $B$ of the same circular cross-section but at different flow rates. The length of pipe $A$ is $1.0 \: m$ and that of pipe $B$ is $2.0 \: m$. The flow in both the pipes is laminar and fully developed ... head loss across the length of the pipes is same, the ratio of volume flow rates $Q_B/Q_A$ is __________ (round off to two decimal places).