# GATE ME 2013 | Question: 25

Choose the CORRECT set of functions, which are linearly dependent.

1. $\sin x , \sin^2 x$ and $\cos^2 x$
2. $\cos x , \sin x$ and $\tan x$
3. $\cos 2x, \sin^2 x$ and $\cos^2 x$
4. $\cos 2x , \sin x$ and $cos x$
in Calculus
recategorized

## Related questions

The value of the definite integral $\int_{1}^{e}\sqrt{x}\ln(x)dx$ is $\dfrac{4}{9}\sqrt{e^3}+\dfrac{2}{9} \\$ $\dfrac{2}{9}\sqrt{e^3}-\dfrac{4}{9} \\$ $\dfrac{2}{9}\sqrt{e^3}+\dfrac{4}{9}\\$ $\dfrac{4}{9}\sqrt{e^3}-\dfrac{2}{9}$
The following surface integral is to be evaluated over a sphere for the given steady velocity vector field $F$ = $xi$ + $yj$+ $zk$ defined with respect to a Cartesian coordinate system having $i$, $j$ and $k$ as unit base vectors. $\iint_{s}^{ }\frac{1}{4}(F.n)dA$ ... $\pi$ $2\pi$ $3\pi/4$ $4\pi$
The real root of the equation $5x − 2 \cos x −1 = 0$ (up to two decimal accuracy) is _______
For the spherical surface $x^2+y^2+z^2=1$, the unit outward normal vector at th point $\left( \dfrac{1}{\sqrt{2}}, \dfrac{1}{\sqrt{2}}, 0\right)$ is given by $\dfrac{1}{\sqrt{2}} \hat{i} +\dfrac{1}{\sqrt{2}} \hat{j} \\$ $\dfrac{1}{\sqrt{2}} \hat{i} -\dfrac{1}{\sqrt{2}} \hat{j} \\$ $\hat{k} \\$ $\dfrac{1}{\sqrt{3}} \hat{i} +\dfrac{1}{\sqrt{3}} \hat{j} +\dfrac{1}{\sqrt{3}} \hat{k}$