search
Log In
0 votes

The matrix form of the linear syatem $\dfrac{dx}{dt}=3x-5y$ and $\dfrac{dy}{dt}=4x+8y$ is

  1. $\dfrac{d}{dt}\begin{Bmatrix} x\\y \end{Bmatrix}=\begin{bmatrix} 3 & -5\\ 4& 8 \end{bmatrix}\begin{Bmatrix} x\\y \end{Bmatrix} \\$
  2. $\dfrac{d}{dt}\begin{Bmatrix} x\\y \end{Bmatrix}=\begin{bmatrix} 3 & 8\\ 4& -5 \end{bmatrix}\begin{Bmatrix} x\\y \end{Bmatrix} \\$
  3. $\dfrac{d}{dt}\begin{Bmatrix} x\\y \end{Bmatrix}=\begin{bmatrix} 4 & -5\\ 3& 8 \end{bmatrix}\begin{Bmatrix} x\\y \end{Bmatrix} \\$
  4. $\dfrac{d}{dt}\begin{Bmatrix} x\\y \end{Bmatrix}=\begin{bmatrix} 4 & 8\\ 3& -5 \end{bmatrix}\begin{Bmatrix} x\\y \end{Bmatrix}$
in Linear Algebra 24.6k points
recategorized by

Please log in or register to answer this question.

Answer:

Related questions

0 votes
1 answer
Which one of the following equations is a correct identity for arbitrary $3 \times 3$ real matrices $P$, $Q$ and $R$? $P(Q+R)=PQ+RP$ $(P-Q)^2 = P^2 -2PQ -Q^2$ $\text{det } (P+Q)= \text{det } P+ \text{det } Q$ $(P+Q)^2=P^2+PQ+QP+Q^2$
asked Feb 19, 2017 in Linear Algebra Arjun 24.6k points
0 votes
0 answers
Given that the determinant of the matrix $\begin{bmatrix} 1 & 3 & 0\\ 2 & 6 & 4\\ -1 & 0 & 2 \end{bmatrix}$ is $-12$, the determinant of the matrix $\begin{bmatrix} 2 & 6 & 0\\ 4 & 12 & 18\\ -2 & 0 & 4 \end{bmatrix}$ is $-96$ $-24$ $24$ $96$
asked Feb 19, 2017 in Linear Algebra Arjun 24.6k points
0 votes
0 answers
If there are $m$ sources and $n$ destinations in a transportation matrix, the total number of basic variables in a basic feasible solution is $m + n$ $m + n + 1$ $m + n − 1$ $m$
asked Feb 19, 2017 in Linear Algebra Arjun 24.6k points
0 votes
0 answers
Consider a $3×3$ real symmetric matrix S such that two of its eigenvalues are $a\neq 0$, $b\neq 0$ with respective eigenvectors $\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$, $\begin{bmatrix} y_1\\ y_2\\ y_3 \end{bmatrix}$ If $a\neq b$ then $x_1y_1+x_2y_2+x_3y_3$ equals $a$ $b$ $ab$ $0$
asked Feb 19, 2017 in Linear Algebra Arjun 24.6k points
0 votes
0 answers
Let the superscript $\text{T}$ represent the transpose operation. Consider the function $f(x)=\frac{1}{2}x^TQx-r^Tx$, where $x$ and $r$ are $n \times 1$ vectors and $\text{Q}$ is a symmetric $n \times n$ matrix. The stationary point of $f(x)$ is $Q^{T}r$ $Q^{-1}r$ $\frac{r}{r^{T}r}$ $r$
asked Mar 1 in Linear Algebra jothee 4.9k points
...