search
Log In
0 votes

If there are $m$ sources and $n$ destinations in a transportation matrix, the total number of basic variables in a basic feasible solution is

  1. $m + n$
  2. $m + n + 1$
  3. $m + n − 1$
  4. $m$
in Linear Algebra 24.6k points
recategorized by

Please log in or register to answer this question.

Answer:

Related questions

0 votes
0 answers
The transformation matrix for mirroring a point in $x – y$ plane about the line $y=x$ is given by $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \\$ $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \\$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\$ $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$
asked Feb 9, 2019 in Linear Algebra Arjun 24.6k points
0 votes
1 answer
Which one of the following equations is a correct identity for arbitrary $3 \times 3$ real matrices $P$, $Q$ and $R$? $P(Q+R)=PQ+RP$ $(P-Q)^2 = P^2 -2PQ -Q^2$ $\text{det } (P+Q)= \text{det } P+ \text{det } Q$ $(P+Q)^2=P^2+PQ+QP+Q^2$
asked Feb 19, 2017 in Linear Algebra Arjun 24.6k points
0 votes
0 answers
The matrix form of the linear syatem $\dfrac{dx}{dt}=3x-5y$ and $\dfrac{dy}{dt}=4x+8y$ is $\dfrac{d}{dt}\begin{Bmatrix} x\\y \end{Bmatrix}=\begin{bmatrix} 3 & -5\\ 4& 8 \end{bmatrix}\begin{Bmatrix} x\\y \end{Bmatrix} \\$ ... $\dfrac{d}{dt}\begin{Bmatrix} x\\y \end{Bmatrix}=\begin{bmatrix} 4 & 8\\ 3& -5 \end{bmatrix}\begin{Bmatrix} x\\y \end{Bmatrix}$
asked Feb 19, 2017 in Linear Algebra Arjun 24.6k points
0 votes
0 answers
Let the superscript $\text{T}$ represent the transpose operation. Consider the function $f(x)=\frac{1}{2}x^TQx-r^Tx$, where $x$ and $r$ are $n \times 1$ vectors and $\text{Q}$ is a symmetric $n \times n$ matrix. The stationary point of $f(x)$ is $Q^{T}r$ $Q^{-1}r$ $\frac{r}{r^{T}r}$ $r$
asked Mar 1 in Linear Algebra jothee 4.9k points
0 votes
0 answers
One of the eigen vectors of the matrix $\begin{bmatrix} -5 & 2\\ -9 & 6 \end{bmatrix}$ is $\begin{Bmatrix} -1\\ 1 \end{Bmatrix} \\$ $\begin{Bmatrix} -2\\ 9 \end{Bmatrix} \\$ $\begin{Bmatrix} 2\\ -1 \end{Bmatrix} \\$ $\begin{Bmatrix} 1\\ 1 \end{Bmatrix} \\$
asked Feb 19, 2017 in Linear Algebra Arjun 24.6k points
...