# GATE2017 ME-1: 27

For the vector $\vec{V}=2yz\hat{i}+3xz \hat{j}+4xy \hat{k}$, the value of $\bigtriangledown$. $(\bigtriangledown \times \vec{V})$ is ________.
in Calculus
recategorized

## Related questions

The divergence of the vector $-yi+xj$ is ________.
A vector field is defined as ... spherical shell formed by two concentric spheres with origin as the center, and internal and external radii of $1$ and $2$, respectively, is $0$ $2\pi$ $4\pi$ $8\pi$
The value of the line integral $\oint_{c}^{ }\overline{F}.{\overline{r}}'ds$ ,where $C$ is a circle of radius $\dfrac{4}{\sqrt{\pi }}$ units is ________ Here, $\overline{F}(x,y)=y\hat{i}+2x\hat{j}$ and ${\overline{r}}'$ ... $\hat{j}$ are the basis vectors in the $x-y$ Cartesian reference. In evaluating the line integral, the curve has to be traversed in the counter-clockwise direction.
The value of the integral over the closed surface $S$ bounding a volume $V$, where $\overrightarrow{r} = x \hat{i} + y \hat{j}+z \hat{k}$ is the position vector and $\overrightarrow{n}$ is the normal to the surface $S$, is $V$ $2V$ $3V$ $4V$
A parametric curve defined by $x= \cos \left ( \dfrac{\Pi u}{2} \right ), y= \sin \left ( \dfrac{\Pi u}{2} \right )$ in the range $0 \leq u \leq 1$ is rotated about the $X$-axis by $360$ degrees. Area of the surface generated is $\dfrac{\Pi }{2} \\$ $\pi \\$ $2 \pi \\$ $4 \pi$