Which of the following statements are TRUE with respect to heat and work? They are boundary phenomena They are exact differentials They are path functions both $(i)$ and $(ii)$ both $(i)$ and $(iii)$ both $(ii)$ and $(iii)$ only $(iii)$

For a simple compressible system, $v, s, p$ and $T$ are specific volume, specific entropy, pressure and temperature, respectively. As per Maxwell's relations, $\bigg( \dfrac{\partial v}{\partial s} \bigg) _p$ is equal to $\bigg( \dfrac{\partial s}{\partial T} \bigg) _p \\$ ... $ - \bigg( \dfrac{\partial T}{\partial v} \bigg) _p \\$ $\bigg( \dfrac{\partial T}{\partial p} \bigg) _s$

Which one of the following modifications of the simple ideal Rankine cycle increases the thermal efficiency and reduces the moisture content of the steam at the turbine outlet? Increasing the boiler pressure Decreasing the boiler pressure Increasing the turbine inlet temperature decreasing the condenser pressure

The volume and temperature of air (assumed to be an ideal gas) in a closed vessel is $2.87 m^{3}$ and $300 \: K$, respectively. The gauge pressure indicated by a manometer fitted to the wall of the vessel is $0.5$ bar. If the gas constant of air is $R=287 \: J/kg.K$ and the atmospheric pressure is $1$ bar, the mass of air (in $kg$) in the vessel is $1.67$ $3.33$ $5.00$ $6.66$