For a simple compressible system, $v, s, p$ and $T$ are specific volume, specific entropy, pressure and temperature, respectively. As per Maxwell’s relations, $\big( \frac{\partial v}{\partial s} \big) _p$ is equal to

- $\big( \frac{\partial s}{\partial T} \big) _p \\$
- $\big( \frac{\partial p}{\partial v} \big) _T \\$
- $ – \big( \frac{\partial T}{\partial v} \big) _p \\$
- $\big( \frac{\partial T}{\partial p} \big) _s$