# GATE2015-1-7

The Blasius equation related to boundary layer theory is a

1. third-order linear partial differential equation
2. third-order nonlinear partial differential equation
3. second-order nonlinear ordinary differential equation
4. third-order nonlinear ordinary differential equation

recategorized

## Related questions

Find the solution of $\dfrac{d^2y}{dx^2}=Y$ which passes through the origin and the point $\left(\ln 2,\dfrac{3}{4}\right)$ $y=\dfrac{1}{2}e^x-e^{-x}$ $y=\dfrac{1}{2}(e^x+e^{-x})$ $y=\dfrac{1}{2}(e^x-e^{-x})$ $y=\dfrac{1}{2}e^x+e^{-x}$
Consider the differential equation $x^2 \dfrac{d^2y}{dx^2}+x\dfrac{dy}{dx}-4y=0$ with the boundary conditions of $y(0)=0$ and $y(1)=1$. The complete solution of the differential equation is $x^2 \\$ $\sin \left (\dfrac{\pi x}{2} \right ) \\$ $e^x \sin \left (\dfrac{\pi x}{2} \right ) \\$ $e^{-x} \sin \left (\dfrac{\pi x}{2} \right) \\$
Laplace transform of the function $f(t)$ is given by $F(s)=L\begin{bmatrix} f(t) \end{bmatrix}=\int_{0}^{\infty }f(t)e^{-st}dt$ . Laplace transform of the function shown below is given by $\displaystyle{\frac{1-e^{-2s}}{s}} \\$ $\displaystyle{\frac{1-e^{-s}}{2s}} \\$ $\displaystyle{\frac{2-2e^{-s}}{s}} \\$ $\displaystyle{\frac{1-2e^{-s}}{s}}$
Consider the following differential equation: $\dfrac{dy}{dt}=-5y$; initial condition: $y=2$ at $t=0$. The value of $y$ at $t=3$ is $-5e^{-10}$ $2e^{-10}$ $2e^{-15}$ $-15e^{2}$