GO Mechanical
0 votes

Consider two concentric circular cylinders of different materials $M$ and $N$ in contact with each other at $r=b$, as shown below. The interface at $r=b$ is frictionless. The composite cylinder is subjected to internal pressure $P$. Let $(u_r^M, u_{\theta}^M)$ and $(\sigma_{rr}^M, \sigma_{\theta \theta}^M)$ denote the radial and tangential displacement and stress components, respectively, in material $M$. Similarly, $(u_r^N, u_{\theta}^N)$ and $(\sigma_{rr}^N, \sigma_{\theta \theta}^N)$ denote the radial and tangential displacement and stress components, respectively, in material $N$. The boundary conditions that need to be satisfied at the frictionless interface between the two cylinders are:

  1. $u_r^M = u_r^N  \text{ and } \sigma_{rr}^M = \sigma_{rr}^N \text{ only}$
  2. $u_r^M = u_r^N \text{ and } \sigma_{rr}^M = \sigma_{rr}^N \text{ and } u_{\theta}^M = u_{\theta}^N \text{ and } \sigma_{\theta \theta}^M = \sigma_{\theta \theta}^N$
  3. $u_{\theta}^M = u_{\theta}^N \text{ and } \sigma_{\theta \theta}^M =  \sigma_{\theta \theta}^N $
  4. $\sigma_{rr}^M =  \sigma_{rr}^N \text{ and } \sigma_{\theta \theta}^M =  \sigma_{\theta \theta}^N$
in Others by (21.2k points) 4 86 272
edited by

Please log in or register to answer this question.

Answer:

Related questions

Welcome to GO Mechanical, where you can ask questions and receive answers from other members of the community.

1,316 questions
90 answers
22 comments
3,550 users