search
Log In
0 votes

If $y = f(x)$ is the solution of $\dfrac{d^2y}{dx^2}=0$ with the boundary conditions y = $5$ at $x = 0$ and $\dfrac{dy}{dx}=2$ at $x = 10$, $f(15) =$ _____________ .

in Calculus 24.6k points
recategorized by

Please log in or register to answer this question.

Answer:

Related questions

0 votes
0 answers
The value of the line integral $\oint_{c}^{ }\overline{F}.{\overline{r}}'ds$ ,where $C$ is a circle of radius $\dfrac{4}{\sqrt{\pi }}$ units is ________ Here, $\overline{F}(x,y)=y\hat{i}+2x\hat{j}$ and ${\overline{r}}'$ ... $\hat{j}$ are the basis vectors in the $x-y$ Cartesian reference. In evaluating the line integral, the curve has to be traversed in the counter-clockwise direction.
asked Feb 24, 2017 in Calculus Arjun 24.6k points
0 votes
0 answers
The value of $\oint_{\Gamma }^{ }\dfrac{3z-5}{(z-1)(z-2)}dz$ along a closed path $\Gamma$ is equal to $(4\pi i)$ , where $z=x+iy$ and $i=\sqrt{-1}$. The correct path $\Gamma$ is
asked Feb 24, 2017 in Calculus Arjun 24.6k points
0 votes
0 answers
The value of $\int_{C}^{ }[(3x-8y^2)dx+(4y-6xy)dy]$, (where $C$ is the boundary of the region bounded by $x$ = $0$, $y$ = $0$ and $x+y$ = $1$) is ________
asked Feb 24, 2017 in Calculus Arjun 24.6k points
0 votes
0 answers
The integral $\oint_{c}^{ } (ydx-xdy)$ is evaluated along the circle $x^2+y^2=\frac{1}{4}$ traversed in counter clockwise direction. The integral is equal to $0$ $\frac{-\pi }{4}$ $\frac{-\pi }{2}$ $\frac{\pi }{4}$
asked Feb 19, 2017 in Calculus Arjun 24.6k points
0 votes
0 answers
The argument of the complex number $\dfrac{1+\imath }{1-\imath }$ where $\imath =\sqrt{-1}$ ,is $-\pi \\$ $\dfrac{-\pi }{2} \\$ $\dfrac{\pi }{2} \\$ $\pi$
asked Feb 19, 2017 in Calculus Arjun 24.6k points
...