# GATE2017 ME-2: 51

Maximise $Z=5x_{1}+3x_{2}$

subject to

$\begin{array}{} x_{1}+2x_{2} \leq 10, \\ x_{1}-x_{2} \leq 8, \\ x_{1}, x_{2} \geq 0 \end{array}$

In the starting Simplex tableau, $x_{1}$ and $x_{2}$ are non-basic variables and the value of $Z$ is zero. The value of $Z$ in the next Simplex tableau is _______.

recategorized

## Related questions

For the linear programming problem: $\begin{array}{ll} \text{Maximize} & Z = 3X_1 + 2X_2 \\ \text{Subject to} &−2X_1 + 3X_2 \leq 9\\ & X_1 − 5 X_2 \geq −20 \\ & X_1, X_2 \geq 0 \end{array}$ The above problem has unbounded solution infeasible solution alternative optimum solution degenerate solution
Consider an objective function $Z(x_1,x_2)=3x_1+9x_2$ and the constraints $x_1+x_2 \leq 8$ $x_1+2x_2 \leq 4$ $x_1 \geq 0$ , $x_2 \geq 0$ The maximum value of the objective function is _______
The problem of maximizing $z=x_1-x_2$ subject to constraints $x_1+x_2 \leq 10, \: x_1 \geq 0, x_2 \geq 0$ and $x_2 \leq 5$ has no solution one solution two solutions more than two solutions
Maximize $Z = 15X_1 + 20X_2$ subject to $\begin{array}{l} 12X_1 + 4X_2 \geq 36 \\ 12X_1 − 6X_2 \leq 24 \\ X_1, X_2 \geq 0 \end{array}$ The above linear programming problem has infeasible solution unbounded solution alternative optimum solutions degenerate solution
A linear programming problem is shown below. $\begin{array}{ll} \text{Maximize} & 3x + 7y \\ \text{Subject to} & 3x + 7y \leq 10 \\ & 4x + 6y \leq 8 \\ & x, y \geq 0 \end{array}$ It has an unbounded objective function. exactly one optimal solution. exactly two optimal solutions. infinitely many optimal solutions.