# GATE2015-3-42

For a given matrix $P=\begin{bmatrix} 4+3i & -i\\ i & 4-3i \end{bmatrix}$, where $i=\sqrt{-1}$, the inverse of matrix $P$ is

1. $P=\displaystyle{\frac{1}{24}}\begin{bmatrix} 4-3i & i\\ -i & 4+3i \end{bmatrix} \\$
2. $P=\displaystyle{\frac{1}{25}}\begin{bmatrix} i & 4-3i\\ 4+3i & -i \end{bmatrix} \\$
3. $P=\displaystyle{\frac{1}{24}}\begin{bmatrix} 4+3i & -i\\ i & 4-3i \end{bmatrix} \\$
4. $P=\displaystyle{\frac{1}{25}}\begin{bmatrix} 4+3i & -i\\ i & 4-3i \end{bmatrix} \\$

recategorized

## Related questions

The lowest eigenvalue of the $2\times 2$ matrix $\begin{bmatrix} 4 & 2\\ 1 & 3 \end{bmatrix}$ is ________
If any two columns of a determinant $P=\begin{bmatrix} 4 & 7 & 8\\ 3 & 1 & 5\\ 9 & 6 & 2 \end{bmatrix}$ are interchanged, which one of the following statements regarding the value of the determinant is CORRECT? Absolute value remains unchanged ... . Both absolute value and sign will change. Absolute value will change but sign will not change. Both absolute value and sign will remain unchanged.
The determinant of a $2 \times 2$ matrix is $50$. If one eigenvalue of the matrix is $10$, the other eigenvalue is _________.
A real square matrix $\textbf{A}$ is called skew-symmetric if $A^T=A$ $A^T=A^{-1}$ $A^T=-A$ $A^T=A+A^{-1}$