For a given matrix $P=\begin{bmatrix} 4+3i & -i\\ i & 4-3i \end{bmatrix}$, where $i=\sqrt{-1}$, the inverse of matrix $P$ is

- $P=\displaystyle{\frac{1}{24}}\begin{bmatrix} 4-3i & i\\ -i & 4+3i \end{bmatrix}$
- $P=\displaystyle{\frac{1}{25}}\begin{bmatrix} i & 4-3i\\ 4+3i & -i \end{bmatrix}$
- $P=\displaystyle{\frac{1}{24}}\begin{bmatrix} 4+3i & -i\\ i & 4-3i \end{bmatrix}$
- $P=\displaystyle{\frac{1}{25}}\begin{bmatrix} 4+3i & -i\\ i & 4-3i \end{bmatrix}$