Let $\phi$ be an arbitrary smooth real valued scalar function and $\overrightarrow{V}$ be an arbitrary smooth vector valued function in a three-dimensional space. Which one of the following is an identity?

- Curl$(\phi \overrightarrow{V})$ = $\bigtriangledown$($\phi$ Div$\overrightarrow{V}$)
- Div$\overrightarrow{V}=0$
- Div Curl$\overrightarrow{V}=0$
- Div($(\phi \overrightarrow{V})$ ) = $\phi$ Div$\overrightarrow{V}$