# Recent activity by Lakshman Patel RJIT

1 answer
A jigsaw puzzle has $2$ pieces. One of the pieces is shown above. Which one of the given options for the missing piece when assembled will form a rectangle? The piece can be moved, rotated or flipped to assemble with the above piece.
1 answer
The bar graph shows the data of the students who appeared and passed in an examination for four schools $P, Q, R$, and $S$. The average of success rates $\text{(in percentage)}$ of these four schools is _______. $58.5\%$ $58.8\%$ $59.0\%$ $59.3\%$
1 answer
The world is going through the worst pandemic in the past hundred years. The air travel industry is facing a crisis, as the resulting quarantine requirement for travelers led to weak demand. In relation to the first sentence above, what does the ... the first sentence Second sentence entirely contradicts the first sentence The two statements are unrelated States an effect of the first sentence
1 answer
Consider a square sheet of side $1$ unit. The sheet is first folded along the main diagonal. This is followed by a fold along its line of symmetry. The resulting folded shape is again folded along its line of symmetry. The area of each face of the final folded shape, in square units, equal to _________ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{16}$ $\frac{1}{32}$
1 answer
The ratio of the area of the inscribed circle to the area of the circumscribed circle of an equilateral triangle is ___________ $\frac{1}{8}$ $\frac{1}{6}$ $\frac{1}{4}$ $\frac{1}{2}$
1 answer
A box contains $15$ blue balls and $45$ black balls. If $2$ balls are selected randomly, without replacement, the probability of an outcome in which the first selected is a blue ball and the second selected is a black ball, is _____ $\frac{3}{16}$ $\frac{45}{236}$ $\frac{1}{4}$ $\frac{3}{4}$
1 answer
Given below are two statements $1$ and $2$, and two conclusions $\text{I}$ and $\text{II}$. $\text{Statement 1}:$ All entrepreneurs are wealthy. $\text{Statement 2}:$ All wealthy are risk seekers. $\text{Conclusion I}:$ ... $\text{I}$ nor $\text{II}$ is correct Both conclusions $\text{I}$ and $\text{II}$ are correct
1 answer
The front door of $\text{Mr. X's}$ house faces East. $\text{Mr. X}$ leaves the house, walking $\text{50 m}$ straight from the back door that is situated directly opposite to the front door. He then turns to his right, walks for another $\text{50 m}$ and ... The direction of the point $\text{Mr. X}$ is now located at with respect to the starting point is ____ South-East North-East West North-West
1 answer
If $\bigoplus \div \bigodot =2;\: \bigoplus \div\Delta =3;\:\bigodot +\Delta =5; \:\Delta \times \bigotimes =10$, Then, the value of $\left ( \bigotimes - \bigoplus \right )^{2}$, is : $0$ $1$ $4$ $16$
1 answer
A digital watch $\text{X}$ beeps every $30$ seconds while watch $\text{Y}$ beeps every $32$ seconds. They beeped together at $\text{10 AM}$. The immediate next time that they will beep together is ____ $\text{10.08 AM}$ $\text{10.42 AM}$ $\text{11.00 AM}$ $\text{10.00 PM}$
1 answer
Consider the following sentences: The number of candidates who appear for the $\text{GATE}$ examination is staggering. A number of candidates from my class are appearing for the $\text{GATE}$ examination. The number of candidates who appear for the $\text{GATE}$ examination are staggering. A number of candidates ... $\text{(i) and (iii)}$ $\text{(ii) and (iii)}$ $\text{(ii) and (iv)}$
1 answer
Five persons $\text{P, Q, R, S}$ and $\text{T}$ are to be seated in a row, all facing the same direction, but not necessarily in the same order. $\text{P}$ and $\text{T}$ cannot be seated at either end of the row. $\text{P}$ should not be seated adjacent ... is to be seated at the second position from the left end of the row. The number of distinct seating arrangements possible is: $2$ $3$ $4$ $5$
1 answer
$\begin{array}{|c|c|} \hline \textbf{Company} & \textbf{Ratio} \\\hline C1 & 3:2 \\\hline C2 & 1:4 \\\hline C3 & 5:3 \\\hline C4 & 2:3 \\\hline C5 & 9:1 \\\hline C6 & 3:4 \\\hline\end{array}$ The distribution of employees at the rank ... $\textsf{C2}$ and $\textsf{C5}$ together is ________. $225$ $600$ $1900$ $2500$
1 answer
The number of hens, ducks and goats in farm $P$ are $65,91$ and $169,$ respectively. The total number of hens, ducks and goats in a nearby farm $Q$ is $416.$ The ratio of hens : ducks : goats in farm $Q$ is $5:14:13.$ All the hens, ducks and goats are sent from farm $Q$ to farm $P.$ The new ratio of hens : ducks : goats in farm $P$ is ________ $5:7:13$ $5:14:13$ $10:21:26$ $21:10:26$
1 answer
Oxpeckers and rhinos manifest a symbiotic relationship in the wild. The oxpeckers warn the rhinos about approaching poachers, thus possibly saving the lives of the rhinos. Oxpeckers also feed on the parasitic ticks found on rhinos. In the symbiotic relationship described above ... a food source, rhinos may be saved from the poachers Oxpeckers save the lives of poachers, rhinos save their own lives
1 answer
The increased consumption of leafy vegetables in the recent months is a clear indication that the people in the state have begun to lead a healthy lifestyle Which of the following can be logically inferred from the information presented in the above statement ... a diet with leafy vegetables The people in the state have increased awareness of healthy hazards causing by consumption of junk foods
1 answer
If $\left\{\begin{matrix} “ \oplus” \; \text{means}\; “-” \\ “ \otimes” \; \text{means}\; “\div” \\ “ \triangle” \; \text{means}\; “+” \\ “ \triangledown” \; \text{means}\; “\times” \end{matrix}\right.$ then, the value of the expression $\triangle 2 \oplus 3 \triangle \left((4 \otimes 2) \triangledown 4) \right) =$ $-1$ $-0.5$ $6$ $7$
1 answer
In the above figure, $\textsf{O}$ is the center of the circle and, $\textsf{M}$ and $\textsf{N}$ lie on the circle. The area of the right triangle $\textsf{MON}$ is $50\;\text{cm}^{2}$. What is the area of the circle in $\text{cm}^{2}?$ $2\pi$ $50\pi$ $75\pi$ $100\pi$
1 answer
Ms. $X$ came out of a building through its front door to find her shadow due to the morning sun failing to her right side with the building to her back. From this, it can be inferred that building is facing _________ North East West South
1 answer
Consider the following sentences: After his surgery, Raja hardly could walk. After his surgery, Raja could barely walk. After his surgery, Raja barely could walk. After his surgery, Raja could hardly walk. Which of the above sentences are grammatically $\text{CORRECT}$? $\text{(i) and (ii)}$ $\text{(i) and (iii)}$ $\text{(iii) and (iv)}$ $\text{(ii) and (iv)}$
1 answer
Five persons $\text{P, Q, R, S and T}$ are sitting in a row not necessarily in the same order. $Q$ and $R$ are separated by one person, and $S$ should not be seated adjacent to $Q.$ The number of distinct seating arrangements possible is: $4$ $8$ $10$ $16$
0 answers
The mean and variance, respectively, of a binomial distribution for $n$ independent trails with the probability of success as $p$, are $\sqrt{np},np\left ( 1-2p \right )$ $\sqrt{np},\sqrt{np\left ( 1-p \right )}$ $np,np$ $np, np\left ( 1-p \right )$
0 answers
If the Laplace transform of a function $f(t)$ is given by $\frac{s+3}{\left ( s+1 \right )\left ( s+2 \right )}$, then $f(0)$ is $0$ $\frac{1}{2}$ $1$ $\frac{3}{2}$
0 answers
Consider an $n \times n$ matrix $\text{A}$ and a non-zero $n \times 1$ vector $\text{p}$. Their product $Ap=\alpha ^{2}p$, where $\alpha \in \Re$ and $\alpha \notin \left \{ -1,0,1 \right \}$. Based on the given information, the eigen value of $A^{2}$ is: $\alpha$ $\alpha ^{2}$ $\surd{\alpha }$ $\alpha ^{4}$
0 answers
Consider the following differential equation $\left ( 1+y \right )\frac{dy}{dx}=y.$ The solution of the equation that satisfies condition $y(1)=1$ is $2ye^{y}=e^{x}+e$ $y^{2}e^{y}=e^{x}$ $ye^{y}=e^{x}$ $\left ( 1+y \right )e^{y}=2e^{x}$
0 answers
For a two-dimensional, incompressible flow having velocity components $u$ and $v$ in the $x$ and $y$ directions, respectively, the expression $\frac{\partial \left ( u^{2} \right )}{\partial x}+\frac{\partial \left ( uv \right )}{\partial y}$ ... $u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}$
0 answers
The value of $\int_{0}^{^{\pi }/_{2}}\int_{0}^{\cos\theta }r\sin\theta \:dr\:d\theta$ is $0$ $\frac{1}{6}$ $\frac{4}{3}$ $\pi$
0 answers
Value of $\left ( 1+i \right )^{8}$, where $i=\sqrt{-1}$, is equal to $4$ $16$ $4i$ $16i$
0 answers
Find the positive real root of $x^3-x-3=0$ using Newton-Raphson method. lf the starting guess $(x_{0})$ is $2,$ the numerical value of the root after two iterations $(x_{2})$ is ______ ($\textit{round off to two decimal places}$).
0 answers
Value of $\int_{4}^{5.2} \ln x\: dx$ using Simpson’s one-third rule with interval size $0.3$ is $1.83$ $1.60$ $1.51$ $1.06$
0 answers
A two dimensional flow has velocities in $x$ and $y$ directions given by $u = 2xyt$ and $v = -y^{2}t$, where $\text{t}$ denotes time. The equation for streamline passing through $x=1,\:y=1$ is $x^{2}y=1$ $xy^{2}=1$ $x^{2}y^{2}=1$ $x/y^{2}=1$
0 answers
Let the superscript $\text{T}$ represent the transpose operation. Consider the function $f(x)=\frac{1}{2}x^TQx-r^Tx$, where $x$ and $r$ are $n \times 1$ vectors and $\text{Q}$ is a symmetric $n \times n$ matrix. The stationary point of $f(x)$ is $Q^{T}r$ $Q^{-1}r$ $\frac{r}{r^{T}r}$ $r$
0 answers
A $\text{PERT}$ network has $9$ activities on its critical path. The standard deviation of each activity on the critical path is $3$. The standard deviation of the critical path is $3$ $9$ $27$ $81$
0 answers
Let $\text{C}$ represent the unit circle centered at origin in the complex plane, and complex variable, $z=x+iy$. The value of the contour integral $\oint _{C}\dfrac{\cosh \:3z}{2z}\:dz$ (where integration is taken counter clockwise) is $0$ $2$ $\pi i$ $2 \pi i$
0 answers
The ordinary differential equation $\dfrac{dy}{dt}=-\pi y$ subject to an initial condition $y\left ( 0 \right )=1$ is solved numerically using the following scheme: $\frac{y\left ( t_{n+1} \right )-y\left ( t_{n} \right )}{h}=-\pi y\left ( t_{n} \right )$ where $\text{h}$ is the ... $h$ in the interval ___________________. $0< h< \frac{2}{\pi }$ $0< h< 1$ $0< h< \frac{\pi }{2}$ for all $h> 0$
0 answers
The value of $\displaystyle{} \lim_{x \rightarrow 0} \left( \frac{1 – \cos x}{x^{2}}\right)$ is $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ $1$
0 answers
Consider a binomial random variable $\text{X}$. If $X_{1},X_{2},\dots ,X_{n}$ are independent and identically distributed samples from the distribution of $\text{X}$ with sum $Y=\sum_{i=1}^{n}X_{i}$, then the distribution of $\text{Y}$ as $n\rightarrow \infty$ can be approximated as Exponential Bernoulli Binomial Normal
0 answers
The Dirac-delta function $\left ( \delta \left ( t-t_{0} \right ) \right )$ for $\text{t}$, $t_{0} \in \mathbb{R}$ ... $\mathcal{L}\left ( \delta \left ( t-a \right ) \right )=F\left ( s \right )$ is $0$ $\infty$ $e^{sa}$ $e^{-sa}$
0 answers
If $y(x)$ satisfies the differential equation $(\sin x) \dfrac{\mathrm{d}y }{\mathrm{d} x} + y \cos x = 1,$ subject to the condition $y(\pi/2) = \pi/2,$ then $y(\pi/6)$ is $0$ $\frac{\pi}{6}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$
0 answers
Let $f\left ( x \right )=x^{2}-2x+2$ be a continuous function defined on $x \in \left [ 1,3 \right ]$. The point $x$ at which the tangent of $f\left ( x \right )$ becomes parallel to the straight line joining $f\left ( 1 \right )$ and $f\left ( 3 \right )$ is $0$ $1$ $2$ $3$