search
Log In
0 votes

During the turning of a $20$ mm- diameter steel bar at a spindle speed of $400$ rpm, a tool life of $20$ minute is obtained. When the same bar is turned at $200$ rpm, the tool life becomes $60$ minute. Assume that Taylor's tool life equation is valid. When the bar is turned at $300$ rpm, the tool life (in minute) is approximately.

  1. $25$
  2. $32$
  3. $40$
  4. $50$
in Materials, Manufacturing and Industrial Engineering 24.6k points
recategorized by

Please log in or register to answer this question.

Answer:

Related questions

0 votes
0 answers
In an orthogonal machining with a tool of $9^{\circ}$ orthogonal rake angle, the uncut chip thickness is $0.2$ mm. The chip thickness fluctuates between $0.25$ mm and $0.4$ mm. The ratio of the maximum shear angle to the minimum shear angle during machining is ___________.
asked Feb 27, 2017 in Materials, Manufacturing and Industrial Engineering Arjun 24.6k points
0 votes
0 answers
Taylor’s tool life equation is given by $VT^n=C$, where $V$ is in $m/min$ and $T$ is in $min$. In a turning operation, two tools $X$ and $Y$ are used. For tool $X$, $n=0.3$ and $C=60$ and for tool $Y$, $n=0.6$ and $C=90$. Both the tools will have the same tool life for the cutting speed (in $m/min$, round off to one decimal place) of ____________
asked Feb 9, 2019 in Materials, Manufacturing and Industrial Engineering Arjun 24.6k points
0 votes
0 answers
The tool life equation for HSS tool is $VT^{0.14}f^{0.7}d^{0.4}$ = constant. The tool life $(T)$ of $30 \: min$ is obtained using the following cutting conditions: $V=45\:m/min$, $f=0.35 \: mm$, $d=2.0 \: mm$ If speed $(V)$, feed $(f)$ and depth of cut $(d)$ are increased individually by $25\%$, the tool life (in $min$) is $0.15$ $1.06$ $22.50$ $30.0$
asked Feb 24, 2017 in Materials, Manufacturing and Industrial Engineering Arjun 24.6k points
...