# GATE2016-3-2

$\displaystyle{}\lim_{x\rightarrow 0}\dfrac{\log_e(1+4x)}{e^{3x}-1}$ is equal to

1. $0 \\$
2. $\dfrac{1}{12} \\$
3. $\dfrac{4}{3} \\$
4. $1$
in Calculus
recategorized

## Related questions

$\displaystyle{}\lim_{x\rightarrow \infty }\sqrt{x^2+x-1}-x$ is $0$ $\infty$ $1/2$ $-\infty$
A point P $(1, 3,−5)$ is translated by $2\hat{i}+3\hat{j}-4\hat{k}$ and then rotated counter clockwise by $90^\circ$ about the $z$-axis. The new position of the point is $(−6, 3,−9)$ $(−6,−3,−9)$ $(6, 3,−9)$ $(6, 3, 9)$
The value of the line integral $\oint_{c}^{ }\overline{F}.{\overline{r}}'ds$ ,where $C$ is a circle of radius $\dfrac{4}{\sqrt{\pi }}$ units is ________ Here, $\overline{F}(x,y)=y\hat{i}+2x\hat{j}$ and ${\overline{r}}'$ ... $\hat{j}$ are the basis vectors in the $x-y$ Cartesian reference. In evaluating the line integral, the curve has to be traversed in the counter-clockwise direction.
The value of $\displaystyle{\lim_{x\rightarrow 0}\left(\frac{-\sin x}{2\sin x+x\cos x}\right)}$ is ________