GATE2016-1-2

If $f(t)$ is a function defined for all $t \geq 0$, its Laplace transform $F(s)$ is defined as

1. $\int_{0}^{\infty }e^{st}f(t)dt \\$
2. $\int_{0}^{\infty }e^{-st}f(t)dt \\$
3. $\int_{0}^{\infty }e^{ist}f(t)dt \\$
4. $\int_{0}^{\infty }e^{-ist}f(t)dt$

recategorized

Related questions

Laplace transform of $\cos( \omega t)$ is $\dfrac{s}{s^2+\omega ^2} \\$ $\dfrac{\omega }{s^2+\omega ^2} \\$ $\dfrac{s}{s^2-\omega ^2} \\$ $\dfrac{\omega }{s^2-\omega ^2}$
If the Laplace transform of a function $f(t)$ is given by $\frac{s+3}{\left ( s+1 \right )\left ( s+2 \right )}$, then $f(0)$ is $0$ $\frac{1}{2}$ $1$ $\frac{3}{2}$
The solution of $\dfrac{d^2y}{dt^2}-y=1,$ which additionally satisfies $y \bigg \vert_{t=0} = \dfrac{dy}{dt} \bigg \vert_{t=0}=0$ in the Laplace $s$-domain is $\dfrac{1}{s(s+1)(s-1)} \\$ $\dfrac{1}{s(s+1)} \\$ $\dfrac{1}{s(s-1)} \\$ $\dfrac{1}{s-1} \\$
The Laplace transform of $te^{t}$ is $\dfrac{s}{(s+1)^{2}} \\$ $\dfrac{1}{(s-1)^{2}} \\$ $\dfrac{1}{(s+1)^{2}} \\$ $\dfrac{s}{(s-1)}$