search
Log In
0 votes

A structural member under loading has a uniform state of plane stress which is usual notations is given by $\sigma _{x} = 3P, \sigma _{y} = -2P$ and $\tau_{xy} = \sqrt{2}P$, where $P>0$. The yield strength of the material is $350$ $\text{MPa}$. If the member is designed using the maximum distortion energy theory, then the value of $P$ at which yielding starts (according to the maximum distortion energy theory) is

  1. $70$ $\text{MPa}$
  2. $90$ $\text{MPa}$
  3. $120$ $\text{MPa}$
  4. $75$ $\text{MPa}$
in Others 27.4k points
edited by

Please log in or register to answer this question.

Answer:

Related questions

1 vote
1 answer
Consider the following for non-zero positive integers, $p$ and $q$. $f\left ( p, q \right ) = \frac{p\times p\times p\times \cdots\: \cdots\: \cdots \times p \:= \:p^{q}}{q\:{terms}}; f\left ( p, 1 \right )=p$ ... $g\left ( 2,1 \right ) \neq f\left ( 2,1 \right )$ $f\left ( 3,2 \right )> g\left ( 3,2 \right )$
asked Feb 15 in Quantitative Aptitude Arjun 27.4k points
0 votes
0 answers
$F(t)$ is a periodic square wave function as shown. It takes only two values, $4$ and $0$, and stays at each of these values for $1$ second before changing. What is the constant term in the Fourier series expansion of $F(t)$? $1$ $2$ $3$ $4$
asked Feb 15 in Others Arjun 27.4k points
0 votes
0 answers
Consider a cube of unit edge length and sides parallel to co-ordinate axes, with its centroid at the point $(1, 2, 3)$. The surface integral $\int _{A} \vec{F}.d\vec{A}$ of a vector field $\vec{F} = 3x\hat{i} + 5y\hat{j} + 6z\hat{k}$ over the entire surface $A$ of the cube is _____________. $14$ $27$ $28$ $31$
asked Feb 15 in Others Arjun 27.4k points
0 votes
0 answers
Consider the definite integral $\int_{1}^{2} \left ( 4x^{2} + 2x + 6 \right )dx.$ Let $I_{e}$ be the exact value of the integral. If the same integral is estimated using Simpson’s rule with $10$ equal subintervals, the value is $I_{S}$. The percentage error is defined as $e = 100\times \left ( I_{e} - I_{S}\right )/I_{e}$. The value of $e$ is $2.5$ $3.5$ $1.2$ $0$
asked Feb 15 in Others Arjun 27.4k points
0 votes
0 answers
Given $\int_{-\infty }^{\infty } e^{-x^{2}} dx = \sqrt{\pi }.$ If $a$ and $b$ are positive integers, the value of $\int_{-\infty }^{\infty } e^{-a\left ( x+b \right )^{2}} dx$ is _______________. $\sqrt{\pi a}$ $\sqrt{\frac{\pi }{a}}$ $b\sqrt{\pi a}$ $b\sqrt{\frac{\pi }{a}}$
asked Feb 15 in Others Arjun 27.4k points
...