search
Log In
1 vote

An equilateral triangle, a square and a circle have equal areas.

What is the ratio of the perimeters of the equilateral triangle to square to circle?

  1. $3\sqrt{3} : 2 : \sqrt{\pi}$
  2. $\sqrt{\left ( 3 \sqrt{3} \right )} : 2 : \sqrt{\pi}$
  3. $\sqrt{\left ( 3 \sqrt{3} \right )} : 4 : 2\sqrt{\pi}$
  4. $\sqrt{\left ( 3 \sqrt{3} \right )} : 2 : 2\sqrt{\pi}$
in Quantitative Aptitude 27.4k points
edited by

1 Answer

0 votes

Let the side of an equilateral triangle, side of a square, the radius of a circle be $a,x,$ and $r$ respectively.

Now, $\frac{\sqrt{3}}{4}\; a^{2} = x^{2} = \pi r^{2} = k^{2}\;(\text{let})$

Now, 

  • $\frac{\sqrt{3}}{4}\; a^{2} = k^{2} \Rightarrow a^{2} = \frac{4k^{2}}{\sqrt{3}} \Rightarrow {\color{Blue}{\boxed{a = \frac{2k}{\sqrt{\sqrt{3}}}}}}$
  • $x^{2} = k^{2} \Rightarrow {\color{Purple}{\boxed{x = k}}}$
  • $\pi r^{2} = k^{2} \Rightarrow {\color{Teal}{\boxed{r = \frac{k}{\sqrt{\pi}}}}}$

Now, we can calculate the perimeter of each of that.

  • The perimeter of an equilateral triangle $ = 3a$
  • The perimeter of a square $ = 4x$
  • The perimeter of a circle $ = 2\pi r$

The ratio of the perimeters of the equilateral triangle to square to circle $ = 3a:4x:2\pi r$

$\qquad \qquad  = 3 \times \dfrac{2k}{\sqrt{\sqrt{3}}} : 4k:2 \pi \times \dfrac{k}{\sqrt{\pi}}$

$\qquad \qquad  = \dfrac{3}{\sqrt{\sqrt{3}}} \times \dfrac{\sqrt{\sqrt{3}}}{\sqrt{\sqrt{3}}} : 2: \sqrt{\dfrac{\pi ^{2}}{ \pi}}$

$\qquad \qquad  = \dfrac{3\;\sqrt{\sqrt{3}}}{\sqrt{3}} : 2: \sqrt{\pi}$

$\qquad \qquad  = \dfrac{3\;\sqrt{\sqrt{3}}}{\sqrt{3}} \times \dfrac{\sqrt{3}}{\sqrt{3}} : 2: \sqrt{\pi}$

$\qquad \qquad  = \sqrt{(3 \sqrt{3})}:2:\sqrt{\pi}$

Correct Answer $:\text{B}$


$\textbf{Important Points:}$

  • The area of an equilateral triangle ${\color{Green}{ = \dfrac{\sqrt{3}}{4}\;(\text{Side of an equilateral triangle})^{2}}}$

  • The area of a square ${\color{Lime}{ = (\text{Side of a square})^{2}}}$

  • The area of a circle ${\color{Cyan}{= (\text{Radius})^{2}}}$

6.9k points 3 6 14
Answer:

Related questions

1 vote
1 answer
A rhombus is formed by joining the midpoints of the sides of a unit square. What is the diameter of the largest circle that can be inscribed within the rhombus? $\dfrac{1}{\sqrt{2}}$ $\dfrac{1}{2\sqrt{2}}$ $\sqrt{2}$ $2 \sqrt{2}$
asked Feb 15 in Quantitative Aptitude Arjun 27.4k points
1 vote
1 answer
Equal sized circular regions are shaded in a square sheet of paper of $1$ cm side length. Two cases, case $\text{M}$ and case $\text{N}$, are considered as shown in the figures below. In the case $\text{M}$, four circles are shaded in the square sheet and in the case $\text{N}$, nine circles are ... of unshaded regions of case $\text{M}$ to that of case $\text{N}$? $2 : 3$ $1 : 1$ $3 : 2$ $2 : 1$
asked Feb 15 in Quantitative Aptitude Arjun 27.4k points
1 vote
1 answer
The average of the monthly salaries of $\text{M, N}$ and $S$ is ₹$4000$. The average of the monthly salaries of $\text{N, S}$ and $P$ is ₹$5000$. The monthly salary of $P$ is ₹$6000$. What is the monthly salary of $M$ as a percentage of the monthly salary of $P$? $50\%$ $75\%$ $100\%$ $125\%$
asked Feb 15 in Quantitative Aptitude Arjun 27.4k points
1 vote
1 answer
A person travelled $80$ $\text{km}$ in $6$ hours. If the person travelled the first part with a uniform speed of $10$ $\text{kmph}$ and the remaining part with a uniform speed of $18$ $\text{kmph}$. What percentage of the total distance is travelled at a uniform speed of $10$ $\text{kmph}$? $28.25$ $37.25$ $43.75$ $50.00$
asked Feb 15 in Quantitative Aptitude Arjun 27.4k points
1 vote
1 answer
In a $12$-hour clock that runs correctly, how many times do the second, minute, and hour hands of the clock coincide, in a $12$-hour duration from $3$ PM in a day to $3$ AM the next day? $11$ $12$ $144$ $2$
asked Feb 15 in Quantitative Aptitude Arjun 27.4k points
...