The vector function expressed by

$F= a_{x}(5y-k_{1}z)+a_{y}(3z+k_{2}x)+a_{z}(k_{3}y-4x)$

represents a conservative field, where $a_{x},a_{y},a_{z}$ are unit vectors along $x,y$ and $z$ directions, respectively. The values of constants $k_{1},k_{2},k_{3}$ are given by:

- $k_{1}= 3,k_{2}= 3,k_{3}= 7$
- $k_{1}= 3,k_{2}= 8,k_{3}= 5$
- $k_{1}= 4,k_{2}= 5,k_{3}= 3$
- $k_{1}= 0,k_{2}= 0,k_{3}= 0$