# GATE Mechanical 2014 Set 2 | Question: 43

Water flows through a $10$ $mm$ diameter and $250$ $m$ long smooth pipe at an average velocity of $0.1 m/s$. The density and the viscosity of water are $997$ $kg/m^3$ and $855×10^−6$ $N.s/m^2$, respectively. Assuming fully-developed flow, the pressure drop (in $Pa$) in the pipe is _______

recategorized

## Related questions

Water flows through a pipe having an inner radius of $10 mm$ at the rate of $36 \: kg/hr$ at $25^ \circ C$. The viscosity of water at $25^ \circ C$ is $0.001 \: kg/m.s$. The Reynolds number of the flow is _______
Water flows through two different pipes $A$ and $B$ of the same circular cross-section but at different flow rates. The length of pipe $A$ is $1.0 \: m$ and that of pipe $B$ is $2.0 \: m$. The flow in both the pipes is laminar and fully developed ... head loss across the length of the pipes is same, the ratio of volume flow rates $Q_B/Q_A$ is __________ (round off to two decimal places).
Consider laminar flow of water over a flat plate of length 1 m. If the boundary layer thickness at a distance of $0.25$ $m$ from the leading edge of the plate is $8$ $mm$, the boundary layer thickness (in $mm$), at a distance of $0.75$ $m$, is _______
For a fully developed flow of water in a pipe having diameter $10$ $cm$, velocity $0.1$ $m/s$ and kinematic viscosity $10^{−5}$ $m^2$/$s$, the value of Darcy friction factor is _______
An ideal water jet with volume flow rate of $0.05$ $m^3$/$s$ strikes a flat plate placed normal to its path and exerts a force of $1000$ $N$. Considering the density of water as $1000kg$/$m^3$,the diameter(in $mm$) of the water jet is _______