# GATE2019 ME-2: 1

In matrix equation $[A] \{X\}=\{R\}$,

$[A] = \begin{bmatrix} 4 & 8 & 4 \\ 8 & 16 & -4 \\ 4 & -4 & 15 \end{bmatrix} \{X\} = \begin{Bmatrix} 2 \\ 1 \\ 4 \end{Bmatrix} \text{ and} \{ R \} = \begin{Bmatrix} 32 \\ 16 \\ 64 \end{Bmatrix}$

One of the eigen values of matrix $[A]$ is

1. $4$
2. $8$
3. $15$
4. $16$

retagged

Let $A$ be a square matrix of order $n$ and $\lambda$ is one of its eigenvalues. Let $X$ be an eigenvector associated to eigenvalue $\lambda$ then we must have equation
$AX = \lambda X$ --------- Equation $(1)$

In Question, It is given that   $AX=R$     ----------Equation $(2)$
Now, From Equation $(1)$ and $(2),$ $\lambda X = R$

So, $\lambda \begin{Bmatrix} 2\\ 1\\ 4 \end{Bmatrix} = \begin{Bmatrix} 32\\ 16\\64 \end{Bmatrix}$

$\Rightarrow$ $\lambda \begin{Bmatrix} 2\\ 1\\ 4 \end{Bmatrix} =16 \begin{Bmatrix} 2\\ 1\\4 \end{Bmatrix}$

$\Rightarrow$ $\lambda = 16$

So, Answer should be $(D)$
410 points 1 2 4

## Related questions

1 vote
Consider the matrix $P=\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ The number of distinct eigenvalues $0$ $1$ $2$ $3$
The determinant of a $2 \times 2$ matrix is $50$. If one eigenvalue of the matrix is $10$, the other eigenvalue is _________.
Consider the matrix $P=\begin{bmatrix} \dfrac{1}{\sqrt{2}} & 0 &\dfrac{1}{\sqrt{2}} \\ 0 & 1 & 0\\ -\dfrac{1}{\sqrt{2}} &0 & \dfrac{1}{\sqrt{2}} \end{bmatrix}$ Which one of the following statements about $P$ is INCORRECT ? Determinant of P is equal to $1$. $P$ is orthogonal. Inverse of $P$ is equal to its transpose. All eigenvalues of $P$ are real numbers.
The product of eigenvalues of the matrix $P$ is $P=\begin{bmatrix} 2 & 0 & 1\\ 4& -3 &3 \\ 0 & 2 & -1 \end{bmatrix}$ $-6$ $2$ $6$ $-2$
Consider an $n \times n$ matrix $\text{A}$ and a non-zero $n \times 1$ vector $p.$ Their product $Ap=\alpha ^{2}p$, where $\alpha \in \Re$ and $\alpha \notin \left \{ -1,0,1 \right \}$. Based on the given information, the eigen value of $A^{2}$ is: $\alpha$ $\alpha ^{2}$ $\surd{\alpha }$ $\alpha ^{4}$